Analysis of Perception and Knowledge on Chemometric Competence among Students and Practitioners Using SEM–PLS

Authors

  • Neni Alyani Institut Pemerintahan Dalam Negeri
  • Miftahul Madya PT. Penerbit Gramatikal Indonesia
  • Nur Handayani IPDN
  • Aini Ayu Institut Keuangan–Perbankan dan Informatika Asia Perbanas, Jakarta Selatan, Indonesia
  • Taufik Hudha PT. Bisa Artifisial Indonesia
  • Octaviano Pratama PT. Bisa Artifisial Indonesia

DOI:

https://doi.org/10.33701/jmsda.v13i2.5740

Keywords:

Artificial Intelligence, Chemometrics, Competence, Perception, SEM–PLS

Abstract

The advancement of digital technology and data driven analysis in the 21st century has driven a major transformation in science education. The integration of coding, artificial intelligence (AI), and deep learning requires strong computational and analytical thinking skills. One of the emerging disciplines addressing this need is chemometrics, a field that combines mathematics, statistics, and computer science to interpret scientific dataestablishing it as a key competence in modern scientific research and education. This study aims to analyze the relationships among perception (X1), knowledge (X2), and chemometric competence (X3) among students and practitioners, in order to identify the factors contributing to the enhancement of data analysis skills in AI based learning environments. Data were collected through an online survey using google forms with a seven point Likert scale, involving respondents from D4, S1, S2, S3, practitioners. The data were analyzed using structural equation modeling–partial least squares (SEM–PLS). Results indicate that all constructs met the criteria for convergent validity (loading factor > 0.70; AVE > 0.50) and reliability (Cronbach’s alpha, Composite Reliability > 0.70). The AVE values ranged from 0.713 to 0.924, with several indicators in X3 showing VIF > 10, suggesting redundancy. The findings demonstrate that perception and knowledge significantly influence chemometric competence, emphasizing the urgency of integrating chemometrics into science education curricula to strengthen AI based analytical literacy.

Downloads

Download data is not yet available.

References

Abreh, M. K., Arthur, F., Akwetey, F. A., & Nortey, S. A. (2025). Modelling STEM students' intention to learn artificial intelligence (AI) in Ghana: A PLS-SEM and fsQCA approach. Discover Artificial Intelligence, 5, 223. https://doi.org/10.1007/s44163-025-00466-8

Brereton, R. G., Jansen, J., Lopes, J., Marini, F., Pomerantsev, A., Rodionova, O., Tauler, R., Walczak, B., & Brown, S. D. (2018). Chemometrics in analytical chemistry—Part I: History, experimental design, and data analysis tools. Analytica Chimica Acta, 1010, 1–16. https://doi.org/10.1016/j.aca.2017.12.015

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104

González-Medina, I., Gavín-Chocano, Ó., Pérez-Navío, E., & Maldonado Berea, G. A. (2025). Trajectories of Digital Teaching Competence: A Multidimensional PLS-SEM Study in University Contexts. Information, 16(5), 373. https://doi.org/10.3390/info16050373

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). SAGE Publications.

Hendriyani, I. (2025). The mediating role of learning motivation in the relationship between perception of lecturer competence and college student learning achievement in English learning subject. Inovasi: Jurnal Sosial Humaniora dan Pendidikan, 4(2), 856–868. https://doi.org/10.55606/inovasi.v4i2.4468

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8

Joshi, P. B. (2023). Navigating with chemometrics and machine learning in chemistry. Artificial Intelligence Review, 56(9), 9089–9114. https://doi.org/10.1007/s10462-023-10391-w

Kharbach, M. (2025). AI-Powered Advances in Data Handling for Enhanced Food Analysis: From Chemometrics to Machine Learning. Foods, 14(19), 3415. https://doi.org/10.3390/foods14193415

Koteczki, R., & Balassa, B. E. (2025). Exploring Generation Z’s Acceptance of Artificial Intelligence in Higher Education: A TAM and UTAUT-Based PLS-SEM and Cluster Analysis. Education Sciences, 15(8), 1044. https://doi.org/10.3390/educsci15081044

Masdoki, M. (2024). A SEM-PLS approach: Teacher 4.0 – Are you competent enough?. Proceeding of the International Conference on Social Sciences and Humanities Innovation, 1(1), 01–09. https://doi.org/10.70062/icsshi.v1i1.18

Noviyanti, R., & Nurhasanah. (2019). Faktor yang mempengaruhi kompetensi nelayan di Teluk Banten: Menggunakan partial least square-structural equation modelling (PLS-SEM). Marine Fisheries: Journal of Marine Fisheries Technology and Management, 10(1), 33–44. https://doi.org/10.29244/jmf.10.1.33-44

Rafi, M., Fikriah, S. A., Khuluk, R. H., & Syafitri, U. D. (2020). Discrimination of cassava, taro, and wheat flour using near-infrared spectroscopy and chemometrics. Jurnal Kimia Sains dan Aplikasi, 23(10), 360–364. https://doi.org/10.14710/jksa.23.10.360-364

Rafi, M., Kautsar, A., Septaningsih, D. A., Melati, P., Heryanto, R., Batubara, I., Syafitri, U. D., & Arif, Z. (2022). Feasibility of near-infrared spectroscopy and chemometrics analysis for discrimination of Cymbopogon nardus from Cymbopogon citratus. Arabian Journal of Chemistry, 15(12), 104277. https://doi.org/10.1016/j.arabjc.2022.104277

Rafi, M., Rismayani, W., Sugiarti, R. M., Syafitri, U. D., Wahyuni, W. T., & Rohaeti, E. (2021). FTIR-based fingerprinting combined

with chemometrics for discrimination of Sonchus arvensis leaves extracts of various extracting solvents and the correlation with its antioxidant activity. Indonesian Journal of Pharmacy, 32(2), 132–140. https://doi.org/10.22146/ijp.755

Rahardjo, K. A. (2022). The influence of competence and perception on interest in the public accountant profession mediated by motivation. World Journal of Advanced Research and Reviews, 16(01), 632–640. https://doi.org/10.30574/wjarr.2022.16.1.1067

Rohman, A., Kusuma, K. S., Sudjadi, S., Riyanto, S., & Prawoto, N. H. (2021). The use of chemometrics for classification of Sidaguri (Sida rhombifolia) based on FTIR spectra and antiradical activities. Indonesian Journal of Chemistry, 21(6), 1568–1576. https://doi.org/10.22146/ijc.64360

Shafirany, M. Z., Susilawati, Y., & Musfiroh, I. (2018). Aplikasi kemometrik dalam penentuan mutu tumbuhan obat. Pharmauho: Majalah Farmasi, Sains, dan Kesehatan, 4(2), 6–14.

Tjahjadi, S. (2024). The influence of candidate figures and perception of leadership quality on electa-bility in the regional head election of DKI Jakarta. Eduvest - Journal of Universal Studies, 4(3), 1355–1373. https://doi.org/10.59188/eduvest.v4i3.1144

Downloads

Published

2025-12-31

How to Cite

Alyani, N., Madya, M., Handayani, N., Ayu , A., Hudha, T., & Pratama, O. (2025). Analysis of Perception and Knowledge on Chemometric Competence among Students and Practitioners Using SEM–PLS. Jurnal MSDA (Manajemen Sumber Daya Aparatur), 13(2), 136–149. https://doi.org/10.33701/jmsda.v13i2.5740